
Chapter 21: Gauss’ law 
Tuesday September 13th  

• Quick review of Gauss’ law 
• The flux of a vector field 
• The shell theorem 

• Gauss’ law for other symmetries 
• A uniformly charged sheet 
• A uniformly charged cylinder 

• Gauss’ law and conductors 
• Electrostatic potential energy (more likely on Thu.) 

Reading: up to page 363 in the text book (end Ch. 21) 

LABS START THIS WEEK 



What if there are multiple 
surface elements to consider?  

Then, 
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For a closed surface, we ALWAYS 
choose      to point outwards. This 
is very important for Gauss’ Law!! 
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Review: the flux of a vector field 



The flux of an electric field 
Gauss’ law is concerned with the flux of E through closed surfaces 

• You may recall that when we developed our graphical repre-
sentation of electric field lines, the electric field strength was 
proportional to the number of field lines crossing a unit area 
perpendicular to the field. 

• Consequently, 

( )# # .of field linesFlux area of field lines
area

= × ⊥ =
⊥∑ ∑

•  In other words, the flux of E through a surface is proportional 
to the number of field lines penetrating the surface. 

• This is the essence of Gauss’ law. 

• Recall also that the number of field lines is related to the 
number of charges producing the electric field. 
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• Symmetry is crucial – symmetries that work: 
• Spherical (solid sphere, spherical shell, etc..) 
• Cylindrical (line charge, tube of charge, etc..) 
• Planar (sheet of charge, slab of charge, etc..) 

• Construct an imaginary (Gaussian) surface to aid in calculating 
the field; you then calculate the flux through this surface. 

• For the spherical case, the Gaussian surface must be spherical 
and concentric with the charge, otherwise the surface integral is 
undetermined (similar principles apply to the other symmetries). 

• The flux through the Gaussian surface and, therefore, the field, 
depends only on the charge inside the surface; 

• The electric field at radius r = R knows nothing about charge at 
larger radii, r > R; 

•  If all charge is contained within a radius R then, for radii r > R, 
it appears as though all of the charge is located at the center of 
the sphere, i.e., field knows nothing about charge distribution. 

Gauss’ law and the shell theorem 

• Symmetry is crucial – symmetries that work: 
• Spherical (solid sphere, spherical shell, etc..) 
• Cylindrical (line charge, tube of charge, etc..) 
• Planar (sheet of charge, slab of charge, etc..) 

Key ideas: 
• Symmetry is crucial – symmetries that work: 

• Spherical (solid sphere, spherical shell, etc..) 
• Cylindrical (line charge, tube of charge, etc..) 
• Planar (sheet of charge, slab of charge, etc..) 

• Construct an imaginary (Gaussian) surface to aid in calculating 
the field; you then calculate the flux through this surface. 

• Symmetry is crucial – symmetries that work: 
• Spherical (solid sphere, spherical shell, etc..) 
• Cylindrical (line charge, tube of charge, etc..) 
• Planar (sheet of charge, slab of charge, etc..) 

• Construct an imaginary (Gaussian) surface to aid in calculating 
the field; you then calculate the flux through this surface. 

• For the spherical case, the Gaussian surface must be spherical 
and concentric with the charge, otherwise the surface integral is 
undetermined (similar principles apply to the other symmetries). 

Today 



Gauss’ law and the shell theorem 
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Gauss’ law and the shell theorem 
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Gauss’ law and the shell theorem 
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Gauss’ law for planar symmetry (sheet charge) 
Side view • Uniform field (does not depend on position) 

• Everywhere perpendicular to the surface 
• Surface charge density,     ; units are C/m2 
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Line of Charge 

Line charge density, or charge per unit 
length,    , in Coulombs per meter. 
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Line of Charge 
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Line charge density, or charge per unit 
length,    , in Coulombs per meter. !



Recall the horrible integration 
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Volume charge density, or charge per unit 
volume,    , in Coulombs per m3. 

Charged cylinder with finite radius R 
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Imaginary Gaussian 
surface of radius r 
and length l. 
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Charge densities 
In 1D (a line or wire): , orQ dQ

L dL
λ λ= =

     is the line charge density, or charge per unit length, in Coulombs 
per meter. L represents length, and Q is charge. 
!

In 2D (a surface or sheet): , orQ dQ
A dA

σ σ= =

    is the surface charge density, or charge per unit area in Coulombs 
per meter2; A represents area, and Q is charge. 
!

In 3D (a solid object): , orQ dQ
V dV

ρ ρ= =

         is the volume charge density, or charge per unit volume in 
Coulombs per meter3. V represents volume, and Q is charge. 
!



Gauss’ law and conductors 
• The electric field inside 

a conductor which is in 
electrostatic 
equilibrium must be 
zero.  

• Equilibrium is reached 
very quickly (<10-9 s).  



Gauss’ law and conductors 
An excess charge 
placed on an 
isolated conductor 
moves entirely to 
the outer surface of 
the conductor. None 
of the excess charge 
is found within the 
body of the 
conductor. 



The electric field outside a conductor 
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Conductors necessarily distort field lines 


